
March 3, 1999

P Y R A M I D
PYRAMID User’s Guide

John Z. Lou, Charles D. Norton, & Thomas A. Cwik

NASA Jet Propulsion Laboratory
California Institute of Technology
MS 168-522
4800 Oak Grove Drive, Pasadena, CA, 91109-8099, USA
http://www-hpc.jpl.nasa.gov/APPS/AMR

Version: 1.0
Platforms: Cray T3E and Scalar Workstations
Requirements: Fortran 90, C, MPI

Contact: {John.Lou, Charles.Norton, Thomas.Cwik}@jpl.nasa.gov
ular-
m-
nal
ces

aking
ting
ware
tional
ous

esh
arch
orted

nte-
rallel
ased

hich
and
u-
ed.
R
with
tor.
R

nts,
ation
Adaptive mesh refinement (AMR) is an advanced numerical technique gaining pop
ity in the scientific and engineering computing community for solving large-scale co
puting problems. The use of AMR techniques can significantly improve computatio
efficiency, and computer memory efficiency, by devoting finite computing resour
(CPU time, memory) to the computational regions where they are most needed, m
it possible to compute an accurate numerical solution with much less compu
resources compared to the use of a global fine mesh. AMR algorithms and soft
development for uniprocessor computers have been investigated in the computa
fluid dynamics (CFD) community for many years, and applied successfully to vari
CFD problems as reported in the open literature. Development of parallel adaptive m
refinement algorithms and software tools, however, is still a relatively new rese
area. Some work in the development of parallel AMR components have been rep
for structured and unstructured meshes in recent years.

Our goal is to develop a comprehensive parallel AMR Library which can be easily i
grated into existing mesh-based parallel applications running on massively pa
computers and computer clusters. The software platform for our parallel library is b
mainly on Fortran 90 and the Message-Passing Interface (MPI) standard, a choice w
we think offers a reasonable combination of flexibility, safety, (compared to C
C++), portability, and efficiency. Interfaces of the parallel AMR Library to other pop
lar scientific computing programming languages like Fortran 77 and C will be provid
The parallel Library will include a set of components for operations at various AM
stages, which include a parallel mesh partitioner, a parallel adaptive mesh refiner
quality control, a parallel load-balancing module, and a parallel local-error estima
Our software architecture design for the parallel AMR library will make these AM
components highly modular, maximizing the user’s control of individual compone
providing the simplest possible interfaces among the components and the applic
code.
1 of 12

PYRAMID Software Architecture

tech-
hen
can

ed on
mply
are

er-
the
the
ed,
ed on

, to the
mesh
si-

ment
1.0 PYRAMID Software Architecture

Parallel unstructured adaptive mesh refinement (AMR) is an advanced numerical
nique useful for time-dependent problems over a non-uniform structural domain. W
the application region is discretized, various portions of the computational domain
be refined, or coarsened, in regions where additional accuracy is required (bas
error-estimation). This approach saves memory and time over methods that si
refine the entire domain, but for sufficiently large problems parallel computers
required.

1.1 Organization Overview

The general organization of the parallel AMR process is illustrated. Initially, the (gen
ally random) input mesh must be repartitioned and redistributed after loading from
disk. The application computation and local error-estimation step occur, followed by
logical AMR process. The logical AMR stage determines how elements will be refin
but the physical refinement of elements is delayed. Load balancing can occur bas
this process.

FIGURE 1. Illustration of Parallel AMR Procedure.

The load balancing process moves coarse elements, based on a weighting scheme
proper destination processors using the migration module. (We use the ParMeTiS
partitioner from University of Minnesota to assist in this stage.) At this point, the phy
cal AMR step occurs by a local refinement process based on the logical refine
stage.

Y
N

Y

Y

N

N

Initial mesh partitioning

Application computation

Estimated error
> tolerance?

Adaptive refinement
(logical phase)

Mesh improvement

Mesh smoothing ?

Adaptive refinement
(physical phase)

Mesh repartition
and migration

Load balancing?
2 of 12 PYRAMID User’s Guide

PYRAMID Software Architecture

esh
ent.
gical
lied

ong
eTiS

ation
from
paral-

fined.
tios.
roves

ents
The
her of
ency
ality,

ted.
with

anage
and
Finally, the element quality can be checked either by performing an explicit m
smoothing operation or by ensuring high quality element creation during refinem
We perform the latter since mesh quality control can be introduced as part of the lo
refinement stage without the potential complications of explicit mesh smoothing app
after physical refinement of the mesh.

1.2 Load Balancing, Mesh Migration, and Quality Control

The ParMeTiS library tries to minimize the edge cut length, and data movement, am
the processors by examining a dual-graph representation of the mesh. Since ParM
only returns a partitioning, the migration module constructs a dual-graph represent
of the mesh data structure, analyzes the load balanced partitioning returned
ParMeTiS, and migrates mesh components among processors automatically, all in
lel.

The mesh quality control scheme classifies elements based on how they were re
This allows us to foresee the potential of creating elements with poor aspect ra
When identified, we can replace these elements with a refinement pattern that imp
upon the geometry.

FIGURE 2. Illustration of the Quality Control Process

The figure shows the original refinement of a coarse element. Successive refinem
will destroy the aspect ratio of existing elements, leading to poor mesh quality.
approach we apply modifies the coarse element refinement, as shown, should eit
the child elements require further refinement (due to local errors or mesh consist
constraints from neighbor element refinement). This process controls the mesh qu
at the expense of creating slightly more elements.

1.3 Working with PYRAMID Library Objects

Organizing and programming the data structures for parallel AMR is very complica
The main structure is the computational mesh that represents a complex geometry
many components. Object-Oriented methods, using C++, have been applied to m
the complexity for this problem before since AMR components can be designed,

No quality control

Quality control
PYRAMID User’s Guide 3 of 12

PYRAMID Software Architecture

in
e the
the

aral-
ame
ame-

data
tation
s it
ioning

any
he

emu-
t the
n.
relations can be specified, using this paradigm. Although parallel AMR is growing
importance, it has not been widely accepted for a number of reasons. These includ
programming complexity and the lack of data abstraction techniques available to
experienced Fortran 77 programmer.

Fortran 90, however, contains many new features that provide new alternatives for p
lel AMR. These features allow for the code to be designed using exactly the s
abstractions that exist in alternative language implementations, but in a Fortran fr
work more familiar to most computational scientists.

Our basic philosophy has been to apply object-oriented design principles in AMR
structure organization. Such features allow for a very abstract design and represen
of source code for parallel AMR. A main program that loads a mesh, distribute
among the parallel processors, creates the mesh data structure, performs repartit
and visualization, now looks like this:

FIGURE 3. Illustration of Adaptive Refinement Procedure with Fortran 90 Library Objects

program pamr
use pyramid_module
 implicit none
 ! statements omitted
 type(mesh) :: in_mesh
 call PAMR_INIT()
 call PAMR_CREATE_INCORE(in_mesh, “mesh_data”)
 call PAMR_REPARTITION(in_mesh)
 do i = 1, refine_level
 call PAMR_ERROR_EST(in_mesh)
 call PAMR_LOGICAL_AMR(in_mesh)
 call PAMR_REPARTITION(in_mesh)
 call PAMR_PHYSICAL_AMR(in_mesh)
 end do
 call PAMR_VISUALIZE(in_mesh, "visfile.plt")
 call PAMR_FINALIZE(.true.)
end program pamr

The main object that a user manipulates is the mesh object via library routines. M
PYRAMID library calls accept optional arguments providing functionality beyond t
basics shown above.

While Fortran 90 is not an object-oriented language (certain OO features can be
lated by software constructs) the methodology simplifies library interfaces such tha
internal details are hidden from library users. This is an important goal of our desig
4 of 12 PYRAMID User’s Guide

Performance Characteristics (CrayT3E)

ptive
this

ition
per-

on-
lock

ele-
on of
an
y to

-

2.0 Performance Characteristics (CrayT3E)

These performance results show the scalability of the code in terms of the ada
refinement time and the load balancing time. The element number varies since, in
illustrative example, refinement randomly chooses half of the elements per part
where mesh consistency must be maintained. The AMR Time includes the time to

form logical and physical refinement while the load balancing time includes partiti
ing, mesh redistribution, and data structure reorganization. These are CPU c
measurements.

3.0 Installation and Usage Instructions

Our library only handles the adaptive refinement features associated with a finite
ment process. We expect that library users provide an input mesh and an indicati
the error on each element, meeting library specifications. The library will perform
adaptive procedure and return modified versions of the input data. It is very eas
install the library on a workstation or Cray T3E system.

3.1 Building the PYRAMID library

1. Unpack the source code with “gunzip pyramid.tar.gz” and “tar xvf pyramid.tar ”.

2. Examine theREADME file and set makefile parameters for a parallel Cray T3E
installation or a scalar workstation installation (Cray T3E is the default).

Note that “SEQ/mpif.h” mustbe in the Pyramid.v1.0/ directory for a scalar installa
tion while itmust not be in that directory for a parallel installation.

3. Build the library with “make ppyramid” or “make spyramid” for a parallel or sca-
lar workstation installation respectively. Typing “make” will build the parallel ver-
sion by default.

TABLE 1. Performance Results for Waveguide Filter after 3 Refinements

Number of
Processors

AMR Time
(seconds)

Load
Balancing
(Migration)
Time in sec

Number of
Elements

Elements
per

Processor

32 57.34 15.36 292,612 ~9,144

64 13.55 3.75 295,405 ~4,615

128 2.93 1.65 305,221 ~2,384

256 0.54 1.51 335,527 ~1,310

512 0.27 1.86 397,145 ~775
PYRAMID User’s Guide 5 of 12

Installation and Usage Instructions

e

te

etis
ilar

t fol-
d is
This

tted
4. Compile the demo program, using theMakefile.pamr file, by typing “make pamr”
or “make samr” for the parallel or scalar version respectively.

Note that the input mesh file for the demo is called “mesh_data”.

5. Run the demo program with “mpprun -n <procs> pamr_test” for the parallel ver-
sion or “pamr_test” for the scalar version. (<procs> = 8 is sufficient for testing.)

6. A visualization file calledpamr_mesh.plt will be created. This can be viewed with
TecPlot using “tecplot pamr_mesh.plt”. Note that you may need to adjust TecPlot’s
mesh and shade attributes to view the partitioning correctly.

In TecPlot, under theField option selectMesh Attributes. Move to Zone Numand
select all zones, then underMesh Colorselect black. Return to theField option and
selectShade Attributes. UnderShade Colormake sure that every zone has a uniqu
color. Make sure that theMesh, Shade, andBoundarybuttons are selected from the
main control box and selectRedraw to show the mesh. Colors represent separa
partitionings.

The sample user program Makefile.pamr shows how the libpyramid.a and ParM
libraries are linked into the user code. Note that -M<libpath> , -p <libpath>, or a sim
compiler option is also required make the module libraries visible.

3.2 Mesh Data Format

The mesh data format is illustrated below. One key point is that the mesh data mus
low the counter-clockwise convention. That is, the direction in which edges are liste
related to the order in which nodes are listed using a counter-clockwise convention.
is generally a well accepted standard in generating mesh data files.

In the figures below, we show a sample mesh, its labeling, and the properly forma
input file for the mesh. The counter-clockwise orientation for element 1 is shown.

FIGURE 4. Illustration of a sample input mesh

1

2 3 4

5 6

7 8 9

1

2
3

4

5

6

7
8

9

10

1 2 3

4 5

8 9 107
6

13

17

14

12

15

11

16

18
6 of 12 PYRAMID User’s Guide

Installation and Usage Instructions

nter-
reat-

d by
mmy
The
nter-
edge

and/

e sam-
ed
By examining the mesh labeling above, and the input data format below, the cou
clockwise format will become clear. Here are additional points to remember when c
ing the input data file from the mesh description.

1. The input mesh file must be named “mesh_data”.

2. The first line lists#nodes, #elements, #edges,and anarbitrary value, in that order.
The AMR library will verify these values when the mesh is loaded.

3. Thenode coordinates are listed next.

4. Thenode numbering follows the node coordinates.

5. Theedge numbering follows the node numbering

6. Finally, theedge node endpoints follow the node numbering.

Note that when listing node coordinates that the node number comes first, followe
the (x,y) coordinate pair. When listing mesh nodes the element number and a du
value are followed by the counter-clockwise ordering of nodes for that element.
mesh edges list the mesh element number followed by the edge ordering in a cou
clockwise fashion based on the node numbering. The edge node endpoints list the
number followed by the node endpoints and a dummy value. This is used to verify
or correct the counterclockwise ordering of previous mesh components.

In the figure above, the elements, nodes, and edges are numbered according to th
ple input mesh format in the figure below. The structure of this format must be follow
exactly.

FIGURE 5. Illustration of Input Mesh Format

9 10 18 1

1
8. 8.
2
4. 4.
3
8. 4.
4
12. 4.
5
6. 2.
6
10. 2.
7
0. 0.
8
8. 0.
9
16. 0.
PYRAMID User’s Guide 7 of 12

Installation and Usage Instructions
1, 1
1 2 3
2, 1
3 2 5
3, 1
3 5 6
4, 1
1 3 4
5, 1
4 3 6
6, 1
4 6 9
7, 1
6 8 9
8, 1
6 5 8
9, 1
5 7 8
10, 1
5 2 7

1
1 4 2
2
4 7 8
3
8 12 9
4
2 5 3
5
5 9 10
6
10 16 11
7
15 18 16
8
12 14 15
9
13 17 14
10
7 6 13

1
1 2 0
2
1 3 0
3
1 4 0
4
2 3 0
8 of 12 PYRAMID User’s Guide

Library Commands

em-
atal

an
es-

ation

e are
in-
5
3 4 0
6
2 7 0
7
2 5 0
8
3 5 0
9
3 6 0
10
4 6 0
11
4 9 0
12
5 6 0
13
5 7 0
14
5 8 0
15
6 8 0
16
6 9 0
17
7 8 0
18
8 9 0

3.3 Error Handling

The library performs various status checks during operation, especially regarding m
ory usage. If a library routine fails due to insufficient memory this is considered a f
error and the library will abort immediately.

If a library routine fails due to an internal PYRAMID message this indicates that
abnormal, or unexpected, condition has occurred. The library will abort, but such m
sages should be brought to the attention of the authors.

3.4 Parallel and Serial Usage

A user source code can use the library on a parallel machine or a scalar workst
without change. Note, however, that the build procedure is different.

4.0 Library Commands

The library commands are very easy to use. The features and options availabl
described. Note that PAMR_INIT() and PAMR_FINAL() must be called at the beg
PYRAMID User’s Guide 9 of 12

Library Commands

sure

to a

ul-
re-
This

data

data
ning and the end of the parallel AMR process, exactly once. No check is made to en
that any routine is called in a particular order.

4.1 Initialization Commands

PAMR_INIT()

This routine initializes the PYRAMID library, and MPI if necessary.

PAMR_CREATE_INCORE(this, in_mesh_file)
type (mesh), intent (inout) :: this
character (len=*), intent (in) :: in_mesh_file

This routine reads non-distributed mesh components (a single file in JPL format) in
single processor and distributes them across multiple processors.

PAMR_CREATE_OUTOFCORE(this, in_mesh_file)
type (mesh), intent (inout) :: this
character (len=*), intent (in) :: in_mesh_file

This routine reads distributed mesh components (multiple files in JPL format) into m
tiple processors. An auxiliary Fortran 90 program "PAMR_MESH_FORMAT" can c
ate the distributed mesh components in the proper file format on a workstation.
format allows for the initial loading of very large meshes.

PAMR_CREATE_COMP(this, in_edges, in_nodes, in_node_coords)
type (mesh), intent (inout) :: this
integer, dimension(:,:), intent (in) :: in_edges
integer, dimension(:,:), intent (in) :: in_nodes
real, dimension(:,:), intent (in) :: in_node_coords

This routine reads distributed mesh components into multiple processors from
stored in Fortran 90-style two-dimensional arrays. (Also valid for Fortran 77.)

PAMR_CREATE_COMP(this, in_edges, in_nodes, in_node_coords)
type (mesh), intent (inout) :: this
integer, dimension(:), intent (in) :: in_edges
integer, dimension(:), intent (in) :: in_nodes
real, dimension(:), intent (in) :: in_node_coords

This routine reads distributed mesh components into multiple processors from
stored in Fortran 90-style one-dimensional arrays. (Also valid for Fortran 77.)

4.2 Termination Command

PAMR_FINALIZE(mpi_finalize)
logical, intent (in), optional :: mpi_finalize
10 of 12 PYRAMID User’s Guide

Closing Comments and Future Work

, it

g the

not
t-by-

the

esh
peci-

ive
nts or
cur
This routine terminates the PYRAMID Library. If mpi_finalize is present and true
will also terminate MPI.

4.3 Adaptive Refinement Commands

PAMR_LOGICAL_AMR(this)
type (mesh), intent (inout) :: this

Compute mesh refinement pattern on a coarse mesh without actually performin
physical refinement.

PAMR_PHYSICAL_AMR(this)
type (mesh), intent (inout) :: this

Perform the physical mesh refinement based on the logical AMR process.

PAMR_ERROR_EST(this)
type (mesh), intent (inout) :: this

Apply the error estimation process on mesh elements. Note: Error estimation is
strictly a part of the library. Users can provide a list of error estimates on an elemen
element basis.

4.4 Repartitioning and Data Migration

PAMR_REPARTITION(this)
type (mesh), intent (inout) :: this

This routine interfaces to the ParMeTiS mesh partitioner, written in C, and migrates
reorganized mesh components to the proper processors.

4.5 Visualization

PAMR_VISUALIZE(this, vis_file)
type (mesh), intent (inout) :: this
character (len=*), intent (in), optional :: vis_file

This routine generates a visualization file, in TecPlot format, from the distributed m
data structure. The file name is “pamr_mesh.plt” unless the optional argument is s
fied.

5.0 Closing Comments and Future Work

The PYRAMID library is still in development, but this early release allows us to rece
user feedback regarding the system. Please contact the authors with any comme
suggestions that would improve your use of the library. Updates to the library will oc
PYRAMID User’s Guide 11 of 12

Closing Comments and Future Work

d on

atch

for-
frequently, as it becomes more wide spread. Visit the web site, or ask to be place
our mailing list to be notified of changes and enhancements.

A system to support 3D parallel adaptive mesh refinement is nearing completion. W
the web site for more information on this system.

Future versions of the library will support mesh coarsening, additional mesh input
mats, and more visualization capabilities.
12 of 12 PYRAMID User’s Guide

	1.0 PYRAMID Software Architecture
	1.1 Organization Overview
	1.2 Load Balancing, Mesh Migration, and Quality Control
	1.3 Working with PYRAMID Library Objects

	2.0 Performance Characteristics (CrayT3E)
	3.0 Installation and Usage Instructions
	3.1 Building the PYRAMID library
	3.2 Mesh Data Format
	3.3 Error Handling
	3.4 Parallel and Serial Usage

	4.0 Library Commands
	4.1 Initialization Commands
	4.2 Termination Command
	4.3 Adaptive Refinement Commands
	4.4 Repartitioning and Data Migration
	4.5 Visualization

	5.0 Closing Comments and Future Work

